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Behavior Based Learning in Identifying High Frequency Trading
Strategies
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Abstract— Electronic markets have emerged as popular
venues for the trading of a wide variety of financial assets,
and computer based algorithmic trading has also asserted
itself as a dominant force in financial markets across the
world. Identifying and understanding the impact of algorithmic
trading on financial markets has become a critical issue for
market operators and regulators. We propose to characterize
traders’ behavior in terms of the reward functions most likely to
have given rise to the observed trading actions. Our approach is
to model trading decisions as a Markov Decision Process (MDP),
and use observations of an optimal decision policy to find
the reward function. This is known as Inverse Reinforcement
Learning (IRL). Our IRL-based approach to characterizing
trader behavior strikes a balance between two desirable features
in that it captures key empirical properties of order book
dynamics and yet remains computationally tractable. Using an
IRL algorithm based on linear programming, we are able to
achieve more than 90% classification accuracy in distinguish-
ing high frequency trading from other trading strategies in
experiments on a simulated E-Mini S&P 500 futures market.
The results of these empirical tests suggest that high frequency
trading strategies can be accurately identified and profiled
based on observations of individual trading actions.

Keywords:Limit order book, Inverse Reinforcement Learning,
Markov Decision Process, Maximum likelihood, Price impact,
High Frequency Trading.

I. INTRODUCTION

MANY FINANCIAL MARKET PARTICIPANTS now
employ algorithmic trading, commonly defined as the

use of computer algorithms to automatically make certain
trading decisions, submit orders, and manage those orders
after submission. By the time of the “Flash Crash” (On May
6, 2010 during 25 minutes, stock index futures, options, and
exchange-traded funds experienced a sudden price drop of
more than 5 percent, followed by a rapid and near complete
rebound), algorithmic trading was thought to be responsible
for more than 70% of trading volume in the U.S. ([3],
[9], [10], and [15]). Moreover, Kirilenko et al. [15] have
shown that the key events in the Flash Crash have a clear
interpretation in terms of algorithmic trading.

A variety of machine learning techniques have been ap-
plied in financial market analysis and modeling to assist
market operators, regulators, and policy makers to understand
the behaviors of the market participants, market dynamics,
and the price discovery process of the new electronic market
phenomena of algorithmic trading([1], [2], [3], [4], [5], [6],
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and [8]). We propose modeling traders’ behavior as a Markov
Decision Process (MDP), using observations of individual
trading actions to characterize or infer trading strategies.
More specifically, we aim to learn traders’ reward functions
in the context of multi-agent environments where traders
compete using fast algorithmic trading strategies to explore
and exploit market microstructure.

Our proposed approach is based on a machine learning
technique ([20], [21], and [23]) known as Inverse Reinforce-
ment Learning (IRL) ([11], [12], [13], [18], and [22]). In
IRL, one aims to infer the model that underlies solutions
that have been chosen by decision makers. In this case
the reward function is of interest by itself in characterizing
agent’s behavior irregardless of its circumstances. For exam-
ple, Pokerbots can improve performance against suboptimal
human opponents by learning reward functions that account
for the utility of money, preferences for certain hands or
situations, and other idiosyncrasies [17]. Another objective
in IRL is to use observations of the traders’ actions to decide
ones’ own behaviors. It is possible in this case to directly
learn the reward functions from the past observations and
be able derive new policies based on the reward functions
learned in a new environment to govern a new autonomous
process (apprenticeship learning). In this paper, we focus our
attention on the former problem to identify trader’s behavior
using reward functions.

The rest of the paper is structured as follows: In Section
2, we define notation and formulate the IRL model. In
Section 3, we first propose a concise MDP model of the limit
order book to obtain reward functions of different trading
strategies, and then solve the IRL problem using a linear
programming approach based on an assumption of rational
decision making. In Section 4, we present our agent-based
simulation model for E-Mini S&P 500 futures market and
provide validation results that suggest this model replicates
with high fidelity the real E-Mini S&P 500 futures market.
Using this simulation model we generate simulated market
data and perform two experiments. In the first experiment, we
show that we can reliably identify High Frequency Trading
(HFT) strategies from other algorithmic trading strategies
using IRL. In the second experiment, we apply IRL on HFTs
and show that we can accurately identify a manipulative HFT
strategy (Spoofing) from the other HFT strategies. Section 5
discusses the conclusion of this study and the future work.
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II. PROBLEM FORMULATION - INVERSE
REINFORCEMENT LEARNING MODEL

The primary objective of our study is to find the reward
function that, in some sense, best explains the observed
behavior of a decision agent. In the field of reinforcement
learning, it is a principle that the reward function is the
most succinct, robust and transferable representation of a
decision task, and completely determines the optimal policy
(or set of policies) [22]. In addition, knowledge of the reward
function allows a learning agent to generalize better, since
such knowledge is necessary to compute new policies in
response to changes in environment. These points motive our
hypothesis that IRL is a suitable method for characterizing
trading strategies.

A. General Problem Definition

Lets define a (infinite horizon, discounted) MDP model
first. Let M = {S,A,P, γ,R}, where:

s ∈ S where S = {s1, s2, ..., sN} is a set of N states;
A = {a1, a2, ..., ak} is a set of k possible actions;
P = {Paj}kj=1, where Paj is a transition matrix such
that Psaj (s

′) is the probability of transitioning to state
s′ given action aj taken in state s;
γ ∈ (0, 1) is a discount factor;
R is a reward function such that R or R(s, a) is the
reward received given action a is taken when in state s.

Within the MDP construct, a trader or an algorithmic
trading strategy can be represented by a set of primitives
(P, γ,R) where R is a reward function representing the
trader’s preferences, P is a Markov transition probability rep-
resenting the trader’s subjective beliefs about uncertain future
states, and γ is the rate at which the agent discounts reward in
future periods. In using IRL to identify trading strategies, the
first question that needs to be answered is whether (P, γ,R)
is identified. Rust [7] discussed this identification problem
in his earlier work in economic decision modeling. He
concluded that if we are willing to impose an even stronger
prior restriction, stationarity and rational expectations, then
we can use non-parametric methods to consistently estimate
decision makers’ subjective beliefs from observations of their
past states and decisions. Hence in formulating the IRL
problem in identifying trading strategies, we will have to
make two basic assumptions: first, we assume the policies
we model are stationary; second, the trading strategies are
rational expected-reward maximizers.

Here we define the value function at state s with
respect to policy π and discount γ to be V πγ (s) =
E[

∑∝
t=0 γR(s

t, π(st))|π], where the expectation is over the
distribution of the state sequence {s0, s1, ..., st} given policy
π (superscripts index time). We also define the Qπγ (s, a) for
state s and action a under policy π and discount γ to be the
expected return from state s, taking action a and thereafter
following policy π. And then we have the following two
classical results for MDPs (see, e.g., [20], [19]):

Theorem 1: (Bellman Equations) Let an MDP M =
{S,A,P, γ,R}, and a policy π : S → A be given. Then,

for all s ∈ S, a ∈ A, V πγ and Qπγ satisfy:

V πγ (s) = Rπ(s, π(s)) + γ
∑
j∈S

Psπ(s)(j)V
π
γ (j),∀s ∈ S (1)

Qπγ (s, a) = Rπ(s, π(s)) + γ
∑
j∈S

Psa(j)V
π
γ (j),∀s ∈ S (2)

Theorem 2: (Bellman Optimality) Let an MDP M =
{S,A,P, γ,R}, and a policy π : S → A be given. Then, π
is an optimal policy for M if and only if, for all s ∈ S:

V π
∗

γ (s) = max
a∈A

[Rπ(s, π(s)) + γ
∑
j∈S

Psπ(s)(j)V
π
γ (j)],

∀s ∈ S (3)

The Bellman Optimality condition can be written in matrix
format as follows:

Theorem 3: Let a finite state space S, a set of a ∈ A,
transition probability matrix Pa and a discount factor γ ∈
(0, 1) be given. The a policy given by π is an optimal policy
for M if and only if, for all a ∈ A\π, the reward R satisfies:

(Pπ − Pa)(I − γPπ)R � 0 (4)

B. Linear Programming Approach to IRL

The IRL problem is, in general, highly underspecified,
which has led researchers to consider various models for
restricting the set of reward vectors under consideration. The
only reward vectors consistent with an optimal policy π are
those that satisfy the set of inequalities in Theorem 3. Note
that the degenerate solution R = 0 satisfies these constraints,
which highlights the underspecified nature of the problem
and the need for reward selection mechanisms. Ng and
Russel [11] advance the idea choosing the reward function to
maximize the difference between the optimal and suboptimal
policies, which can be done using a linear programming
formulation. We adopt this approach, maximizing:∑

s∈S
[Qπγ (s, a

′)− γ max
a∈A\a′

Qπγ ],∀a ∈ A (5)

Putting theorem 4 and 5 together, we have an optimization
problem to solve to obtain a reward function under an optimal
policy:

max
R

[
∑
s∈S

β(s)− λ
∑
s∈S

α(s)]

s.t.

α(s) � β(s),∀s ∈ S
(Pπ − Pa)(I − γPπ)R � β(s),∀a ∈ A,∀s ∈ S

(Pπ − Pa)(I − γPπ)R � 0 (6)

In summary, we assume an ergodic MDP process. In
particular, we assume the policy defined in the system has
a proper stationary distribution. And we further assume
that trader’s trading strategies are rational expected reward
maximizers. There are specific issues regarding the non-
deterministic nature of trader’s trading strategies when deal-
ing with empirical observations, and we will address them
later in the next section.



C. Key Modeling Issues

One of the key issues that arise in applications of IRL
or apprenticeship learning to algorithmic trading is that
the trader under observation may not appear to follow a
deterministic policy. In particular, a trader observed in the
same state on two different occasions may take two different
actions, either because the trader is following a randomized
policy or because the state space used in the model lacks
the fidelity to capture all the factors that influence the
trader’s decision. To address the issue of non-deterministic
policies, we need to first understand the relationship be-
tween a deterministic policy versus non-deterministic policy
under the assumption we made earlier. We use notation
MD for Markov deterministic policy, and MR for Markov
non-deterministic policy. We can establish the relationship
between the optimality of a deterministic policy versus a
non-deterministic policy through the following proposition
([17]):

Proposition: For all v ∈ V and 0 ≤ γ ≤ 1:

sup
d∈DMD

{Rd + γPdv} = sup
d∈DMR

{Rd + γPdv},∀d ∈ A (7)

Policies range in general from deterministic Markovian
to randomized history dependent, depending on how they
incorporate past information and how they select actions. In
the financial trading world, traders deploy different trading
strategies where each strategy has a unique value proposition.
We can theoretically use cumulative reward to represent the
value system encapsulated in the various different trading
strategies. For example in a simple keep-or-cancel strategy
for buying one unit, the trader has to decide when to place
an order and when to cancel the order based on the market
environment (can be characterized stochastic processes) to
maximize its cumulative reward under the constraint of the
traders’ risk utility and capital limit. This can be realized
in a number of ways. It can be described as a function
R(s) meaning when the system is in state s the trader is
always looking for a fixed reward. This notion of value
proposition drives the traders to take corresponding optimal
actions according to the market conditions. However due to
the uncertainty of the environment and the random error of
the measurement in the observations, a deterministic policy
could very likely be perceived to have a non-deterministic
nature.

Based on the proposition or equation 7, the optimal value
attained by a randomized policy is the same as the one
attained by a deterministic policy, and there exists an optimal
value and it is unique in V . Therefore, we know that the
supremum value obtained from all policies can be used to
recover an equivalent optimal stationary deterministic policy.
Essentially we are looking for an optimal deterministic
stationary policy which achieves the same optimal value as
the non-deterministic policy. This guarantees the learning
agent to obtain a unique reward function that achieves the
optimal value. The merit of this approach is that the reward
function will be unique for a specific set of observations. We
will not be concerned about whether the trader’s real policy is

deterministic or not. This is especially useful in the problem
where we attempt to identify traders’ trading strategies based
on a series of observations.

III. A MDP MODEL FOR LIMIT ORDER BOOK

Cont et al. ([24], and [25]) make the claim that order flow
imbalance and order volume imbalance have the strongest
link with the price changes. It seems that these two variables
can best capture the limit order book dynamics. It has been
proven effective in modeling buy-one-unit and make-the-
spread strategies by Hunt, et al. [27] where three price levels
have shown significantly good resemblance to the real market
characteristics. Other financial market microstructure studies
also provide strong evidence of using order book imbalance
to represent the market supply and demand dynamics or
information asymmetry ([5], [8], [6], [14] and [26]). Based
on this evidence, we choose two bid/ask volume imbalance
variables to capture the market environment, and we choose
position/inventory level as a private variable of the trader.
In summary, we use three sensory variables to characterize
the environment in which the traders operate. Now we can
define state s = [TIM,NIM,POS]T , and each variable
takes following discrete values:

TIM - volume imbalance at the best bid/ask: {-1, 0, 1};
NIM - volume imbalance at the 3rd best bid/ask: {-1,
0, 1};
POS - position status: {-1, 0, 1}.

When the variable takes value 0 (in neutral state), it means
that the variable takes mean (µ) value within µ ± 1.96σ;
when the value is above µ + 1.96σ, we define it as high;
and when the value is below µ − 1.96σ, we define it as
low. Essentially we have two external variables: TIM and
NIM. Variables TIM and NIM inform the traders whether
volume imbalance is moving toward sell side (low), neutral,
or toward buy side (high), as well as the momentum of the
market price movement. The private variable POS informs
traders whether his or her inventory is low, neutral or high.
All three variables are very essential for algorithmic traders
to make their trade decisions. We also define a set of actions
that correspond to traders’ trading choices at each state a =
{PBL, PBH, PSL, PSH, CBL, CBH, CSL, CSH, TBL, TBH,
TSL, TSH}, and each value is defined in TABLE I.

We assume a highly liquid market where market orders
will always be filled, and we apply the model to a simulated
order book where both limit orders and market orders are
equally present.

IV. EXPERIMENTS

In this section, we conduct two experiments using the
MDP model defined earlier to identify algorithmic trading
strategies. We use the six trader classes defined by Kirilenko
et. al. [15], namely High Frequency Traders, Market Makers,
Opportunistic Traders, Fundamental Buyers, Fundamental
Sellers and Small Traders. In general, HFTs have a set of
distinctive characteristics, such as, very high activity volume
throughout a trading day, frequent modification of orders,



TABLE I
ACTION DEFINITION.

Action Action Description
Code

1 PBH - place buy order higher than the 3rd best bid price
2 PBL - place buy order lower than the 3rd best bid price
3 PSH - place sell order higher than the 3rd best ask price
4 PSL - place sell order lower than the 3rd best ask price
5 CBH - cancel buy order higher than the 3rd best bid price
6 CBL - cancel buy order lower than the 3rd best bid price
7 CSH - cancel sell order higher than the 3rd best ask price
8 CSL - cancel sell order lower than the 3rd best ask price
9 TBH - Trade buy order higher than the 3rd best bid price

10 TBL - Trade buy order lower than the 3rd best bid price
11 TSH - Trade sell order higher than the 3rd best ask price
12 TSL - Trade sell order lower than the 3rd best ask price

maintenance of very low inventory levels, and an agnostic
orientation toward long or short positions. Market Makers are
short horizon investors who follow a strategy of buying and
selling a large number of contracts to stay around a relatively
low target level of inventory. Opportunistic Traders some-
times behave as Market Makers buying and selling around
a target position, and sometimes they act as Fundamental
Traders accumulating long or short positions. Fundamental
Buyers and Sellers are net buyers and sellers who accumulate
positions in one single direction in general. Small Traders are
the ones who have significant less activities during a typical
trading day.

In the first experiment, we are interested in separating
High Frequency Trading strategies from Market Making and
Opportunistic Trading strategies in the simulated E-Mini
S&P 500 futures market. From Figure (b) in Fig. 1, we
see that the behaviors of the Fundamental Buyers/Sellers are
distinctively different from the other algorithmic traders. It is
clear that classification between the HFTs and these classes
of trading strategies are relatively trivial. We therefore devote
our attention to separate High Frequency Trading strategies
from the Market Marking and the Opportunistic Trading
strategies. We will start this section with a description of
the design of our agent-based simulation for E-Mini S&P
500 futures market [33]. We will then use the data generated
from this simulation as observations to recover the reward
functions of different kinds of trading strategies, and we
apply various classification methods on these trading strate-
gies in the reward space to see whether we can accurately
identify the different trading strategy classes. In the second
experiment, we will focus on a specific High Frequency
Trading strategy called Spoofing, and try to separate this
trading strategy from the other High Frequency Trading
strategies. In general, we test the hypothesis that reward
functions can be used to effectively identify High Frequency
Trading strategies in both within-group and across-group
situations.

A. Simulated E-Mini S&P 500 Futures Market

When simulating a system it is convenient to decompose
the system into its basic parts. A financial market can be un-
derstood as a set of market participants, a trading mechanism,

and a security. Agent-based models have a similar structure
and include a set of agents, a topology and an environment.
Through this framework it is possible to describe market
participants as a set of agents with a set of actions and
constraints, the market mechanism as the topology, and the
exogenous flow of information relevant to market as the
environment [32].

Using this framework, the simulation is tuned to replicate
the same market conditions and variables as that of the
nearest month E-Mini S&P 500 futures contract market. The
agents in the model reflect closely the classes of participants
observed in the actual S&P 500 E-mini futures market and
the market mechanism is implemented as an electronic limit
order book (see Fig. 1). Each class of participants is then
characterized by their trade speed, position limit, order size
distribution, and order price distribution. All these charac-
terizations are based on the order book data from the E-
Mini S&P 500 futures contracts provided by the Commodity
Futures Trading Commission (CFTC). (see TABLE II).

TABLE II
TRADER GROUP CHARACTERIZATION

Tra
der

Number
of

Speed
of

Posi
tio

n

M
ar

ket

Type Traders Order Limits Volume
Small 6880 2 hours −30 ∼ 30 1%

Fundamental 1268 1 minute − ∝∼∝ 9%
Buyers

Fundamental 1276 1 minute − ∝∼∝ 9%
Sellers
Market 176 20 seconds −120 ∼ 120 10%
Makers

Opportunistic 5808 2 minutes −120 ∼ 120 33%
HFTs 16 0.35 seconds −3000 ∼ 3000 38%

TABLE III
TRADER GROUP VALIDATION

Tra
der

Sim
ulat

ed

Actu
al

Rate
-Sim

ulat
ed

Rate
-A

ctu
al

Type Volume Volume Cancellation Cancellation
Small 1% 1% 40% 20− 40%

Fundamental 10% 9% 44% 20− 40%
Buyers

Fundamental 10% 9% 44% 20− 40%
Sellers
Market 10% 10% 35% 20− 40%
Makers

Opportunistic 31% 33% 50% 40− 60%
HFTs 38% 38% 77% 70− 80%

After the model is simulated there are two stages of
validation. The first stage consists of a validation of the
basic statistics for each set of agents, such as arrival rates,
cancellations rates, and trade volume (see TABLE III). The
values observed in the simulation are compared to data of



(a) Actual E-Mini S&P 500 traders

(b) Simulated E-Mini S&P 500 traders

Fig. 1. E-Mini S&P 500 traders’ end-of-day position vs. trading volume.

participants in the actual market. The second stage of valida-
tion consists of verifying that the price time-series produced
by the simulation exhibits “stylized facts” (Kullmann,1999
[28]) that characterize financial data. These include heavy
tailed distribution of returns1 (Appendix A Fig. 7), absence
of autocorrelation of returns2 (Appendix A Fig. 8), volatility
clustering3 (Appendix A Fig. 9), and aggregational normal-
ity4 (Appendix A Fig. 10). The detailed simulation validation
results can be found in the work done by M. E. Paddrik, et
al. [33].

B. Identify HFTs from Market Making and Opportunistic
Trading Strategies

Using the IRL model that we formulated above, we learn
the corresponding reward functions from 18 simulation runs
where each run consists of approximately 300,000 activities
including orders, cancellations, and trades. We then use the
different classification methods on the rewards to see how
well we can separate the HFTs from the other two different
trading strategies.

From Fig. 2, we see that reward space has a very succinct
structure, which tends to confirm the observations made in
([22], and [34]) that policies are generally noisier than reward
functions. We also observe that the reward function converges
faster than the policy as observation time increases. In
addition to the lack of robustness in policy space, the lack of
portability of learned policies is another important drawback
in the use of policies to characterize trading strategies.
Furthermore, the fact that actions are notional makes it
unclear how one could use policies to measure differences

1The empirical distributions of financial returns and log-returns are fat-
tailed.

2There is no evidence of correlation between successive returns.
3Absolute returns or squared returns exhibit a long-range slowly decaying

autocorrelation function.
4As the time scale increases, the fat-tail property diminishes and the return

distribution approaches Gaussian distribution.

Fig. 2. Reward Space Convergence For a series of observations of a
particular trader, as time interval increases, the reward at state 5 converges
from 10 to 0, and the reward at state 14 converges from 0.66 to 0. At all
the other states, the reward remains at -1.

among trading strategies. Hence, our study focuses attention
on reward space. Using Principal Component dimension
shrinkage method, we are able to compare the two trading
strategies in a three dimensional space visually. Fig. 3 and
Fig. 4 show a clear separation of the High Frequency Trading
strategies from the other two classes of trading strategies.

Three different classification methods are then applied on
the learned reward functions. From the comparison (Table
IV) of the results of the three different classification methods,
i.e. Linear Discriminant Analysis (LDA), Quadratic Dis-
criminant Analysis (QDA), and Multi-Gaussian Discriminant
Analysis (MDA). The two non-linear methods perform better
than the linear one. It can be seen from the visualiza-
tion reward distributions. The highest classification accuracy
achieved by all three methods is 100%. In general, all of them
achieved relatively high accuracy in the range between 95%
and 100%. The sensitivity (i.e. true positive) is in the range
between 89% and 94%. The specificity (i.e. true negative) is
in general better, and it is 100% across all three classification
methods.

TABLE IV
TRADING STRATEGY CLASSIFICATION RESULTS

High Frequency Traders vs. Opportunistic Traders
LDA QDA MDA

Accuracy 97% 100% 97%
Sensitivity 94% 100% 94%
Specificity 100% 100% 100%

High Frequency Traders vs. Market Makers
LDA QDA MDA

Accuracy 95% 97% 95%
Sensitivity 88% 94% 88%
Specificity 100% 100% 100%

Opportunistic Traders vs. Market Makers
LDA QDA MDA

Accuracy 70% 75% 83%
Sensitivity 39% 100% 72%
Specificity 100% 100% 94%

The results using this model for separating Opportunistic
Traders vs. Market Makers are not as good compared with
those between HFT vs. Market Making and HFT vs. Op-



Fig. 3. Reward space clustering between High Frequency Trading strategies
vs. Opportunistic Trading strategies

Fig. 4. Reward space clustering between High Frequency Trading strategies
vs. Market Marking Trading strategies

portunistic strategies (TABLE IV). From the classification
results, we can see that MDA classification performed the
best and achieved 83% accuracy, 72% sensitivity, and 94%
specificity. However, this result is expected in that the current
order book model is specifically targeted at characterizing
High Frequency Trading strategies. In order to achieve better
results between Opportunistic and Market Making strategies,
we will have to consider other factors that can best charac-
terize the Opportunistic Trader’s behaviors. Further study of
the these two classes’ behaviors will be critical in improving
the classification performance between these two classes’ of
trading strategies.

C. Identify A Spoofing Strategy from Other HFTs

In this section, we are interested in one particular manip-
ulative strategy in the High Frequency Trading paradigm:
Spoofing, which sometimes is referred to as ”Hype and
Dump” manipulation ([29], [30], and [31]). Both empirical
and theoretical evidence show that the manipulators can
profit from this manipulative trading practice. In this scheme,
the manipulator artificially inflates the asset price through
promotion in order to sell at the inflated price, or deflates
the asset price through false hype in order to buy at the
deflated price. One concrete example of this trading strategy
is illustrated in Fig. 5 A. Suppose a trader intends to sell 5
shares of an asset, he first submits a large limit-buy order
with a bid at or below the current market price making the
buy side of the order book seem large. Based on the market
information infusion process or supply-demand theory, the
market price will tend to move higher. And the spoofing
trader will then submit a market-sell order and consequently

cancels the original buy order as it is illustrated in Fig. 5 B.

Fig. 5. Market microstructure-based manipulation example: buy spoofing

This manipulative practice is illegal under the U.S. securi-
ties law, yet it has been frequently discovered in both equity
and futures markets. Our simulated spoofing trading strategy
is based on our observations on a futures market where a
trader repeatedly exercised the spoofing pattern over a month
period. Due to the nature of the CFTC investigation, we will
not be able to disclose the specifics for publications, but we
are able to capture the deterministic nature of their strategy in
the simulation. Specifically, in our discrete time agent-based
simulation model, we design a spoofing agent as one of the
HFTs except that it deploys additional trading plots: first they
engage in a signaling game and then a trading game. In the
signaling stage, the spoofing agent places a large buy order at
the best bid price. After 600 milliseconds (it is designed with
relative to the speed of HFT’s cancellation rate), it transitions
into the trading stage where they cancel the original limit
order and places a market order. Since the trader is a HFT,
in order to maintain the constraint of his inventory, the trader
will have to spoof and trade on the other side of the book at
certain point.

As we have done for the general simulation, we run 18
times of the simulation to generate 18 market instances. And
then we randomly select 18 samples for all the general HFT
trading strategies, and select 18 samples for the Spoofing
trading strategy for IRL. We then obtain 36 reward functions
with labels and apply three classification methods on these
samples, and obtain results in TABLE V. From these results,
we see that we can identify the Spoofing strategy from
the other High Frequency Trading strategies with at least
92% accuracy. We also observe again that the non-linear
classification rule works better in general.

V. CONCLUSIONS

The primary focus of this paper is to use Inverse Rein-
forcement Learning method to capture the key characteristics
of the High Frequency Trading strategies. From the results
using a linear programming method for solving IRL with
simulated E-Mini S&P 500 futures market data, we attain



Fig. 6. Reward space clustering between High Frequency Trading strategies
vs. the Spoofing strategy

TABLE V
SPOOFING TRADING STRATEGY VS. OTHER HFT CLASSIFICATION RESULTS

Market Makers vs. Opportunistic Traders
LDA QDA MDA

Accuracy 92% 97% 97%
Sensitivity 100% 100% 100%
Specificity 83% 94% 94%

a high identification accuracy ranging between 95% and
100% for the targeted trading strategy class, namely High
Frequency Trading from Market Making and Opportunistic
strategies. We also show that the algorithm can accurately
(between 92% and 95%) identify a particular type of HFT
spoofing strategy from other HFT strategies. And we also
argue that the reward space is better suited for identification
of trading strategies than the policy space.

We investigate and address the issues of modeling algorith-
mic trading strategies using IRL models such as, addressing
non-deterministic nature of the observed policies in learning,
constructing efficient MDP models to capture order book
dynamics, achieving better identification accuracy in reward
space, etc. With a reliably validated agent based market
simulation, we capture the essential characteristics of the
algorithmic trading strategies. The practical implication of
this research is that we demonstrate that the market operators
and regulators can use this behavior based learning approach
to perform trader behavior based profiling, and consequently
monitor the emergence of new HFTs and study their impact
to the market.

Here is a list of future research to be done:

• Apply both the linear programming approach and max-
imum likelihood approaches to the simulated trading
strategies and the Spoofing data collected from the
actual market, and compare the results of these two
approaches in terms of identification accuracy.

• Create simulation agent based on reward functions
learned from the actual market observations, and study
the new trading strategy’s impact to the market quality.
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APPENDIX A

(a) Actual E-Mini S&P 500

(b) Simulated E-Mini S&P 500

Fig. 7. E-Mini S&P 500 Heavy Tailed Distribution of Returns From
panel (a) and (b), we see normality tests of returns for both actual and
simulated E-Mini S&P 500 show deviation from Gaussian distribution
toward both tails.

(a) Actual E-Mini S&P 500

(b) Simulated E-Mini S&P 500

Fig. 8. E-Mini S&P 500 Absence of Autocorrelation of Returns From
panel (a) and (b), we see autocorrelation of returns for both actual and
simulated E-Mini S&P 500 are all close to zero within 95% confidence
level.

(a) Actual E-Mini S&P 500

(b) Simulated E-Mini S&P 500

Fig. 9. E-Mini S&P 500 Autocorrelation Clustering From panel (a) and
(b), we see returns decay slowly for both actual and simulated market. Even
though there are few lags outside the 95% confidence lines, the simulation
decaying pattern closely resembles that of the actual market as lag increases.

(a) Actual E-Mini S&P 500

(b) Simulated E-Mini S&P 500

Fig. 10. E-Mini S&P 500 Aggregational Normality As shown in panel
(a) and (b), returns approaches to Gaussian distribution as the time scale
increase for both actual and the simulated market.


